
Air filters Selection Guide

China	primary efficiency>5µm					Secondary filter>1µm Secondary filter >1µm						
GB/T14295	80%> Efficiency>15%					70%> Efficiency>20%			99%> Efficiency>70%			
USA	C1	C2	L5	L6	L7	L8	M9	M10	M11	M12	M13	M14
ASHRAS		C4										
Europe	G1	G1 G2 G3		G	64 F5		F6		F7	F8		
new standard	65%	80%	% 80 90%		>9	0%	4	40% 60		1%	80%	90%
Europe	EU1	EU2	EU3		E!	U4	E	:U5	EU6		EU7	EU8
old standard												
China	Sub-HEPA>0.5µm					HEPA>0.5μm						
GB/T14295	99.9%>Efficiency>95%							Efficience	ciency>99.9%			
USA	H12H16				VI	H17	VH18	VH19	VH	120		
ASHRAS												
Europe	F9	F9 H10 H1		11	H12	Н	113	H14		H15 17		
new standard	85%	6 95% 99		9%	99.90%	99.	.95%	99.995%	99.9995%			
Europe	EU9 EU10			EU	U11 EU12 EU13 EU14							
old standard												

Air filters Selection Guide

American efficiency specification

 $ASHRAE\ 52.2P\text{-}1996 \textbf{suggestion specification}$

Spec	% Arrestance	%, By quantity method					
Эрес	70 Arrestance	0.30 [~] 1.0μm	1.0~3.0μm	3.0~10μm			
C-1	E<65						
C-2	65<=E<70						
C-3	70<=E<75						
C-4	75<=E<80						
L-5	(80~85)			20<=E<35			
L-6	(85~90)			35<=E<50			
L-7	(>90)			50<=E<70			
L-8				70<=E<80			
M-9			E<50				
M-10			50<=E<65				
M-11			65<=E<80				
M-12			80<=E<90				
H-13		E<75					
H-14		75<=E<85					
H-15		85<=E<95					
H-16		95<=E					
UH-17	>=9	9.97 DOP, It is for the 0.3um dust particle					
UH-18	>=9	9.99 diameter according to IES Standard					
UH-19	>=99	9.999					
UH-20	\-00	By quantity method, It is fo	By quantity method, It is for the 01-0.2um dust				
UN-20	>=99	particle diameter according	g to IES Stan	dard			

American environment academy of science to highly effective filter classification, IES-RP-CC001.3-1993

Akind (Type A): Under fixed amount of windDOPexperiment, to0.3µm granule filter efficiency>=99.97%.

 $Bkind\ (Type\ B):\ Satisfies Akind\ of\ performance,\ and\ after 100\% and 20\% fixed\ amount\ of\ wind\ comparison\ leak\ detection\ experimage and after 100\% and 20\% fixed\ amount\ of\ wind\ comparison\ leak\ detection\ experimage and\ after 100\% and 20\% fixed\ amount\ of\ wind\ comparison\ leak\ detection\ experimage and\ after 100\% and 20\% fixed\ amount\ of\ wind\ comparison\ leak\ detection\ experimage and\ after 100\% and$

 ${\tt Ckind} \ \ ({\tt Type} \ C): 0.3 \mu m \ DOP {\tt experiment filter efficiency} > 99.99\%, \ \ {\tt and after multi-dispersed phases} DOP {\tt scanning experiment.}$

 $Dkind \ (Type\ D): 0.3 \mu m\ DOP experiment \ filter\ efficiency >= 99.999\%, \ and \ after\ multi-\ dispersed\ phases DOP scanning\ experiment.$

Ekind (Type E): Satisfies US military with atomic energy standard MIL-F-51086, uses in to filter the poison, the nuclear po Filter, $0.3\mu m$ DOP experiment filter efficiency>=99.97%.

European efficiency specification

Europe present classifies, CEN EN779 and CEN EN 1,882

Edi ope p	1 0 3 0 11 0 1 0		IN LIN7/7 and OLIN LI		
Spec % Arrestance		% Dust - spor and count method	% MPPS		
G1	E<65				
G2	65<=E<80				
G3	80<=E<90				
G4	90<=E				
F5		40<=E<60			
F6		60<=E<80			
F7		80<=E<90			
F8		90<=E<95			
F9		95<=E			
H10			85<=E<95		
H11			95<=E<99.5		
H12			99.5<=E<99.95		
H13			99.95<=E<99.995		
H14			99.995<=E<99.9995		
U15			99.9995<=E<99.99995		
U16			99.99995<=E<99.999995		
U17			99.999995<=E		

Note(1): When the experimental end resistance is 450Pa, placeaverage counting efficiency value is equal to 0.4 µthe m to the color method efficiency value.

Note(2): Because sends the dust experiment, equally the counting efficiency value is higher than the initial efficiency value which the Chinese present method determines.

Europe old classifies, Europe ventilates the association, Eurovent

Spec	% Arrestance	% Dust - spot	% Sodium Flame
EU1	E<65		
EU2	65<=E<80		
EU3	80<=E<90		
EU4	90<=E		
EU5		40<=E<60	
EU6		60<=E<80	
EU7		80<=E<90	
EU8		90<=E<95	
EU9		95<=E	
EU10			
EU11			
EU12			95<=E<99.9
EU13			
EU14			

ent.

Illutant and so on the dangerous dust